Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Biomolecules ; 12(4)2022 04 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1792832

RESUMEN

Edoxaban is a direct oral anticoagulant (DOAC) that has been recently indicated for the treatment of pulmonary embolism (PE) in SARS-CoV-2 infections. Due to its pharmacokinetic variability and a narrow therapeutic index, the safe administration of the drug requires its therapeutic drug monitoring (TDM) in patients receiving the treatment. In this work, we present a label-free method for the TDM of edoxaban by surface enhanced Raman spectroscopy (SERS). The new method utilises the thiol chemistry of the drug to chemisorb its molecules onto a highly sensitive SERS substrate. This leads to the formation of efficient hotspots and a strong signal enhancement of the drug Raman bands, thus negating the need for a Raman reporter for its SERS quantification. The standard samples were run with a concentration range of 1.4 × 10-4 M to 10-12 M using a mobile phase comprising of methanol/acetonitrile (85:15 v/v) at 291 nm followed by the good linearity of R2 = 0.997. The lowest limit of quantification (LOQ) by the SERS method was experimentally determined to be 10-12 M, whereas LOQ for HPLC-UV was 4.5 × 10-7 M, respectively. The new method was used directly and in a simple HPLC-SERS assembly to detect the drug in aqueous solutions and in spiked human blood plasma down to 1 pM. Therefore, the SERS method has strong potential for the rapid screening of the drug at pathology labs and points of care.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas del Metal , Monitoreo de Drogas , Oro/química , Humanos , Nanopartículas del Metal/química , Preparaciones Farmacéuticas , Piridinas , SARS-CoV-2 , Tiazoles
2.
Int J Pharm ; 608: 121122, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1433361

RESUMEN

Herein, we demonstrated the development and characterization of a dry powder inhaler (DPI) formulation of edoxaban (EDX); and investigated the in-vitro anticoagulation effect for the management of pulmonary or cerebral coagulopathy associated with COVID-19 infection. The formulations were prepared by mixing the inhalable micronized drug with a large carrier lactose and dispersibility enhancers, leucine, and magnesium stearate. The drug-excipient interaction was studied using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. The drug and excipients showed no physical inter particulate interaction. The in-vitro drug aerosolization from the developed formulation was determined by a Twin Stage Impinger (TSI) at a flow rate of 60 ± 5 L /min. The amount of drug deposition was quantified by an established HPLC-UV method. The fine particle fraction (FPF) of EDX API from drug alone formulation was 7%, whereas the formulations with excipients increased dramatically to almost 7-folds up to 47%. The developed DPI formulation of EDX showed a promising in-vitro anticoagulation effect at a very low concentration. This novel DPI formulation of EDX could be a potential and effective inhalation therapy for managing pulmonary venous thromboembolism (VTE) associated with COVID-19 infection. Further studies are warranted to investigate the toxicity and clinical application of the inhaled EDX DPI formulation.


Asunto(s)
Trastornos de la Coagulación Sanguínea/tratamiento farmacológico , COVID-19 , Inhaladores de Polvo Seco , Piridinas/administración & dosificación , Tiazoles/administración & dosificación , Administración por Inhalación , Aerosoles , Trastornos de la Coagulación Sanguínea/virología , COVID-19/complicaciones , Humanos , Tamaño de la Partícula , Polvos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA